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INTRODUCTION 
 
The aim of the project is to reconstruct a signal function ( )x x t=  if the phase of the Fourier transform ˆ ˆ( )x x ω=  and 
some additional a priori information of convex type are available. This is a well-known problem in telecommunications 
engineering. The problem can be presented to students, who should find efficient solution methods working in teams 
under the supervision of staff members (student centred project). The task catalogue can be as follows: 
 
• Formulate the signal reconstruction problem (in continuous and discrete form). 
• Study the corresponding theory and look for suitable reconstruction methods. 
• Register the materials used (references from literature or the Web). 
• Collect a set of signals, appropriate to test and train the methods (parameter adaptation). 
• Develop software for reconstruction methods. Experiment with software files using the test signals. 
• Study the influence of preconditions and parameters on the quality of reconstruction. 
• Share your experiences with other team members and discuss further investigation also with the supervisor. 
• Prepare a presentation or paper about the topic in cooperation with the team members. 
• Indicate the contribution of the team and other sources used. 
 
The project can be a good preparation for later work after graduation. Hence, the article presents some material for its 
realisation. 
 
PROBLEM DESCRIPTION 
 
It is assumed that the signals are quadratically integrable time functions ( )x x t=  belonging to the Hilbert space 

2 ( )X L R= . As an example, the signal: 
 
 ( ) ( ) exp( )x t h t t= ⋅ −  (1) 
 
is considered, where h(t) is the unit step function. This signal starts with x(0)=1 and decreases in time exponentially 
to 0. The frequency domain of the signal is often used to reveal certain features important for its transfer, compression 
or reconstruction. It is given by the Fourier (integral) transform (FT): 
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given. How students can work on this special convex feasibility problem is described in this article. With some 
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which is a (complex valued) function of frequency ω  in 2 ( )L R . The symbol j represents the imaginary unit satisfying 
2 1j = − . The polar representation of x̂  reads: 

 
 ˆ( ) ( ) exp( ( ) )x xx r jω ω φ ω= ⋅ ⋅ , (2a) 
 
where ( )xr ω  is the magnitude or amplitude (spectrum) and ( )xφ ω  is the phase (spectrum) of the signal. In Example (1), 
the Fourier transform is given by: 
 

 ( )1
2 2 2

1 1 1ˆ2 ( ) exp tan ( )
1 1 1 1

x j j
j

ωπ ω ω
ω ω ω ω

−⋅ = = − ⋅ = ⋅ − ⋅
+ ⋅ + + +

. (3) 

 
Because of: 

 1 1ˆ2 ( )
2 2

xπ ω⋅ − = , (3a) 

 
the values of x̂  lie on a circle in the complex plane. By Equation (3) amplitude and phase are: 
 

 1

2

1( ) , ( ) tan ( )
2 (1 )

x xr ω φ ω ω
π ω

−= = −
+

. (3b) 

 
The amplitude spectrum in Equation (3b) is a smooth even function with maximum (0)xr  decreasing to 0 for increasing 
frequencies ω . 
 
Assume that signal x is unknown but some a priori information is available. E.g. the phase ( )φ ω  of x is known (by 
measurement). Then, x belongs to the closed convex set: 
 
 { }: ( ) ( ) . .xM x a eφ φ ω φ ω= = . (4) 
 
In Example (1), the phase is 1( ) tan ( )xφ ω−= − . Further, perhaps the carrier of x (the closure of the set with nonzero 
values) is bounded or the range of x is restricted. Then, x is for appropriate closed intervals I and J an element of at least 
one of the two closed convex sets: 
 
 { } { }: ( ) 0 . . , : ( ) . .J

IM x x t a e for t I M x x t J a e= = ∉ = ∈ . (5) 
 
In Example (1), e.g. I = [0,10] and J = [0,1] can be used. Referring to I this is only approximately true: the times t>10 
are cut, where x(t) is smaller then 0.0001. 
 
Problem: A signal Ix M M Mφ∈ = ∩  or J

Ix M M M Mφ∈ = ∩ ∩  has to be determined where M ≠ ∅  is supposed. 
 
This is a so-called convex feasibility problem. It can happen in practice that the intersection consists of more than one 
element x or is even inconsistent (empty). In the regular case of signal reconstruction, which is described by Hayes [1] 
and shortly repeated by Stark in Chapter 8 [2], the set M belongs to a one-dimensional subspace of 2L . Hence, possibly 
a scaled version of the original signal x is reconstructed. A further problem comes in by discretisation. One has to use 
discrete signals ( )kx t  with 0 1 ... nt t t< < <  instead of x(t). Then, one has to apply the discrete Fourier transform (DFT) 
ˆ( )lx ω  with 0 1 ... nω ω ω< < <  instead of the FT ˆ( )x ω . Finally, all work has to be done numerically on a computer using 

software. Hence, there are several sources for errors. 
 
SOLUTION METHOD 
 
A simple iterative solution method for huge and sparse systems of linear equations without typical pattern is called 
projection onto hyperplanes (PH). Geometrically, the single linear equations represent hyperplanes iH  (i=1,2,…m) in a 
Euclidean vector space X. The PH method projects step by step orthogonally onto these hyperplanes: 
 
 ( )0 1 ( ), |k k k k i k k kx X x P x P x H x x∆+∈ = = = + , (6) 
 
where { }( ) 1,2,...,i k m∈  selects one of the iH  and kP  is the corresponding orthogonal projector onto this iH . The 
update kx∆  is a normal of iH . In the standard case, the selection is cyclic (see Figure 1a). The advantage of the PH 
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method is that the projections can be easily determined. If the system of linear equations is consistent, that means, if the 
intersection of the hyperplanes is nonempty, one solution can be found by the PH method; namely, the solution which is 
nearest to the starting vector. It is only important that each hyperplane is selected again and again during the process. 
This method was proposed by Kaczmarz [3]. Later, it was applied and modified in computerised tomography (CT), 
introducing more general relaxed orthogonal projections: 
 
 ( ) (1 ) , 0 2k k k k k k k kT P E P E Pλ λ λ λ= + − = + − < <  (7) 
 
as iteration operators, where E is the identity operator. This method: 
 
 0 1, , ( )k k k k k k k k k ky X y T y y y y P y y∆ ∆ λ+∈ = = + = −  (8) 
 
was called algebraic reconstruction technique (ART) [4][5]. The relaxation parameters kλ  were used to accelerate the 
convergence and to control the limit. While for 1kλ = , the original PH method arises, overrelaxation means a longer 
update (1 2kλ< < ) and underrelaxation means a shorter update ( 0 1kλ< < ). For a special case see Figure 1b. 
 
 
 
 
 
 
 
 
 
         a)            b) 
 
Figure 1: a) Successive orthogonal projections onto two straight lines 1H  and 2H  in the plane; b) Straight line H in the 
plane with orthogonal, overrelaxed and underrelaxed projections. 
 
The orthogonal projector onto a hyperplane in a Euclidian vector space can be generalised to a metric projector onto a 
closed convex set C in a Hilbert space X. This projector P = P(.,C) maps each element x onto the (uniquely determined) 
element P x C∈ , which is the nearest to x in C = F(P),the fixed point set of P: 
 
 ,x P x x c for all x X c C− ≤ − ∈ ∈ . (9) 
 
The metric projector can again be relaxed by a parameter λ . More generally, strongly Fejér monotone operators 

(., , )T T C α= with respect to C satisfying for certain 0α >  the relations: 
 
 2 2 2 ,x Tx x c Tx c for all x X c Cα − ≤ − − − ∈ ∈  (10) 
 
can be used instead of projectors P while essentially conserving the convergence statements of the method. These 
operators T have also the fixed point set C. The projector P fulfils (10) with 1α = , a relaxed projector belongs also to 
this class (10). The general convex feasibility problem assumes that there are convex closed sets iC  (i = 1,2,…,m) with 
nonempty intersection C. Then, the Fejér (projection like) method: 
 
 ( )0 1 ( ), , ,k k k k i k k k kx X x T x T x C x xα ∆+∈ = = = +  (11) 
 
converges to an element *x C∈ . Here { }( ) 1,2,...,i k m∈  selects one of the iC  and kT  is the corresponding strongly 
Fejér monotone operator with respect to iC  (compare (6)). 
 
APPLICATION IN SIGNAL RECONSTRUCTION 
 
First one considers iteration operators for the sets IM  and Mφ  mentioned in the problem description. The set JM  is 
not used in this application. Relaxed projections for IM  have the form [6]: 
 

 ( )
1

( ) ( ) ( ), ( ) , 0 2
1I I

I

if t I
T x t q t x t q t

if t I
λ

λ
∈ 

= ⋅ = < < − ∉ 
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This means | ( ) | 1q t ≤ . Relaxed projections for Mφ  are [6]: 
 
 ( ) ( ) ( )( ) ( )1( ) ( exp( ))( ), 1 exp cosP

x x x x xT x t F a r j t a jφ φ φφ λ φ φ λ φ φ−
+= ⋅ ⋅ ⋅ = − ⋅ − ⋅ + − . (13) 

 
Hayes [1] used instead (with the cosine term replaced by 1): 
 
 ( ) ( ) ( )( )1( ) ( exp( ))( ), 1 expH H

x x x xT x t F a r j t a jφ φ φφ λ φ φ λ−= ⋅ ⋅ ⋅ = − ⋅ − ⋅ +  (13a) 
 
Knowing the phase φ  of a signal x (by measurement) and its carrier I (by a priori information), a corresponding signal 
has to be determined, that is, one is looking for Ix M M Mφ∈ = ∩ . Hence, the two method classes: 
 
 1 1 2 1: , :k I k k I km x T T x m x T T xφ φ+ += =  (14) 
 
come in. Since 2m  can be interpreted as 1m  with modified starting signal one restricts to 1m . Special realisations are: 
 
• HLO (with phase quasi-projection of Hayes [1]): method 1m  based on HT Tφ φ=  (13a). 

• PCS (with relaxed phase projection): method 1m  based on PT Tφ φ=  (13). 
 
In the experiments, the cyclic variant 1 ,k k Iz T z T T Tφ+ = =  with 0z X∈  was applied. 
 
TEST SIGNALS AND PARAMETERS 
 
For experiments, a set of test signals was created, namely: 
 

 

1 2

3 4

1 1( ) 1 cos , ( ) 1 1 cos
2 10 2 50 10

6 6( ) cos sin , ( ) ( 5) exp
20 18 20

t t tx t x t

t t tx t x t t

π π⋅ ⋅     = ⋅ + = ⋅ − ⋅ +     
     
+ +  = ⋅ = + ⋅ − 

 

 (15) 

 
denoted in turn by T1, T2, T3 and T4. The starting signals for the methods were chosen from: 
 

 
0 00

0 0 0

( ) : ( ) 1, ( ) ( ) ( )

( ) cos( ), ( ) 1 sin , ( ) 1
2

x x xx t r

tx t t x t x t

ω φ ω φ ω φ ω≡ = =

 = = − ≡ 
 

 (16) 

 
denoted in turn by S1, S2, S3 and S4. The signal S1 is given in the frequency domain. It has already the right phase. The 
quality of approximations is influenced by the following preconditions: 1) signal (type) ( )x t ; 2) a priori information φ , 
I and J; 3) starting signal 0 ( )x t ; 4) iterative method; 5) relaxation parameters φλ  and Iλ ; 6) step size h of 
discretisation; and 7) number k* of iterations. 
 
EXPERIMENTS 
 
Signals 2( ) [ , ]x t L a b∈  were discretised using n equidistant values ( ) [ , ]ix t a b∈ , where i = 0,1,…,n and 0a t= , nb t= . It 
is necessary to add values ( ) 0ix t = , where i=n+1,…,N-1. Here N is a power of 2 satisfying 2 2N n− ≥ . The extended 
interval 0 1[ , ]Nt t −  has at least twice the length of [a, b]. So, a unique reconstruction is reached [1]. The Fourier transform 
(FT) is replaced by the discrete Fourier transform (DFT), using a fast realisation (FFT). The extended starting signal is 
iterated up to an approximation; finally, restricted again to [a, b]. This is in accordance with the fact that the DFT 
approximates the FT only in the first halve of the interval. 
 
The tests used a = 0, b = 50, n = 50 and N = 128. Choosing a step size of h = 1 in the variable t the signals are 
represented by vectors x  of length 128. Further, k*=50 iteration cycles were carried out. Since the reconstruction is 
only unique up to a scalar c, the (rounded) relative errors (in the Euclidean norm) were related to: 
 

 *
50 50

50

(0)( ) ( )
(0)

xx t x t
x

= ⋅  (17) 
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instead of 50 ( )x t  obtaining by this scaling the same initial value as the original x(t). The smallest errors for each method 
are given in the following tables in italics. 
 
Influence of relaxation parameters: In Table, 1 the signal 2( ) ( )x t x t=  is used as original starting point with 0 ( ) 1x t ≡ . 
The table shows that high overrelaxation (both parameters in [1.5, 2]) causes the best results. Comparing the methods 
HLO seems to be slightly better than PCS, not only for this test signal, in contrary to the expectation. The cause that 
overrelaxation is successful can lie in a small angle between the linear hull of the restriction sets. The method PCS 
needs higher overrelaxation than HLO to get comparable quality of reconstruction. 
 

Table 1: Influence of relaxation parameters. 
 

Parameter 1 Parameter 2 HLO PCS 
0.5 0.5 1.2 E-1 1.7 E-1 
1.0 1.0 5.9 E-3 9.7 E-3 
1.5 1.0 5.2 E-4 1.1 E-3 
1.0 1.5 6.1 E-4 1.1 E-3 
1.5 1.5 1.3 E-8 7.7 E-8 
1.7 1.7 1.3 E-8 1.5 E-8 
2.0 2.0 3.0 E-1 2.7 E-1 

 
Figure 2 presents the results for PCS and parameter values 1.7: 
 

 
 

Figure 2: Reconstruction of signal T2 using overrelaxation. 
 
Influence of starting signals: Again signal 2( ) ( )x t x t=  is used. Table 2 contains the relative errors after k = 50 cycle 
steps for the standard parameter choice (both parameter values equals 1): 
 

Table 2: Influence of starting signals. 
 

Signal HLO PCS 
S1 2.6 E-3 3.7 E-3 
S2 3.7 E-3 6.3 E-3 
S3 3.9 E-3 9.8 E-3 
S4 5.9 E-3 9.7 E-3 

 
It turns out that the starting signals are arranged by decreasing quality. The explanation seems to be simple. S1 already 
considers the given phase. S2 and S3 contain trigonometric functions as the original. S4 uses no additional information. 
Again the results of PCS can be made closer to HLO by choosing higher relaxation as HLO. 
 
Influence of signal type: Using signals ( ) ( )ix t x t=  for i = 1,2,3,4 and starting with signal S4 ( 0 ( ) 1x t ≡ ). Table 3 gives 
the relative errors after k*=50 cycle steps for the standard parameter choice (both parameter values equals 1): 
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Table 3: Influence of signal type. 
 

Signal HLO PCS 
T1 5.3 E-3 7.7 E-3 
T2 5.9 E-3 9.7 E-3 
T3 6.6 E-2 8.9 E-2 
T4 8.9 E-2 1.1 E-1 

 
The signal types are ordered by decreasing quality. The explanation seems to be not so simple here. 
 
Further investigation: The given experimental data are not very representative. So, a lot of more experiments can be 
made, increasing the number of signals and starting signals, also investigating two-dimensional signals and adding other 
variants of the solution method. Possible are parameter optimisations in each cycle, weighted means of iteration 
operators, more general iteration operators, more a priori information, etc. 
 
MATLAB RECONSTRUCTION FILES 
 
The following MATLAB file realises the PCS algorithm. The file contains a fixed test signal and a fixed starting signal. 
It can be made more flexible if these signals must be specified after starting the file. The comments after the symbol % 
make the file self explaining. 
 
% scriptfile PCS.m for a signal with restricted carrier reconstruction from phase 
t = 0:127; ts = 0:50;                                 % time interval, long and short form (carrier) 
x = (0.5 + 0.5*cos(pi*t/10)).*(1-t/50);   % test signal 2 
xa = x.*(t<=50); xs = x(1:51);                % short signal 2 (with and without zeros) 
fx = fft(xa); afx = angle(fx);                    % frequency domain, phase 
y = ones(size(t)); y0 = y(1:51);               % special starting signal (identical 1) 
disp(' '); K = input(' number of iteration cycles: '); disp(' '); 
la_I = input(' relaxation parameter for carrier correction: '); 
la_F = input(' relaxation parameter for phase correction: '); 
for j = 1:K                                                % iteration cycle steps 
   ya = y.*(t<=50);                                   % carrier correction 
   yr = y + la_I*(ya-y);                             % relaxation 1 
   fy = fft(yr); afy = angle(fy);                 % frequency domain, phase 
   fc = abs(fy).*exp(i*afx);                      %  phase correction 
   p  = cos(afy-afx); pp = (p>0).*p;         % cosine factor, positive part 
   fp = pp.*fc;                                          % FT of the projection 
   fr = fy + la_F*(fp-fy);                         % relaxation 2 
   y  = ifft(fr);                                          % inverse FT, iterated signal 
end                                                          % end of iteration 
ys = real(y(1:51));                                  % short approximated signal (real) 
zs = x(1)/ys(1)*ys;                                 % adaptation of initial value 
ey = zs-xs; e = norm(ey)/norm(xs);       % relative error (vector norm) 
disp(' '); disp(' relative error: '); disp(e);% output of relative error 
subplot(2,1,1)                                         % signal graphic, picture 1 
plot(ts,xs,ts,ys,'*',ts,zs,'+',ts,y0,'.')          % plot of signals (see title) 
title('signal blue - approximation green* - adaptation  red+') 
subplot(2,1,2)                                        % signal graphic, picture 2 
plot(ts,ey)                                              % plot of the error function 
title('error function - adapted approximation') 
xlabel('PCS with carrier - phase correction') 
 
The excellent possibilities of MATLAB for graphic representations allow a vivid imagination of the approximation 
process and a detailed study of its local behaviour. The file reconstructs signal S2 with both parameter values 1.7 (see 
Figure 2). The file can be made even more user friendly by adding a graphical user interface (GUI). 
 
CONCLUSIONS 
 
The project is demanding and flexible but there is a task of practical value. A mathematical theory is needed to solve the 
task. Some mathematical background is already existing. However, further investigation is needed to obtain a correct 
solution. The numerical methods need software implementation on a computer. So, some experience from computer 
science and programming is necessary. A lot of experiments can be made to fit the methods to the task. A test set of 
signals is used to train the methods. Students can work in teams and can compete with other teams for the best results. 
The results can be presented at a workshop. Each presentation can be discussed and evaluated. At the end, a joint paper 
can be written. The project work can be used as input to later scientific work and graduation papers. 
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